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'1Zn,8n} are equivalent if and only if there is a certain homomorphism between

the matrix rings generated by Q(t), t € [0,#D and Y(t), t € [0,o], The

equivalence is identical to weak lumpability in the case where {Zn,Sn} is a

renewal process.

Ty, el T S e
Although the conditions for strong lumpability can be written in an attractive
form, they are too restrictive to be of any real interest. Weak lumpability

is of more interest since (as will be shown) it occurs in less trivial examples,
! but the necessary conditions are very complicated. The equivalence defined

herein has the advantage of having simple necessary and sufficient conditions.
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Abstract

We define a form of equivalence between Markov-renewal processes that
includes strong and weak lumpability as special cases, and examine its properties.

1f {xn’Tn} is a Markov-renewal process with kernel Q(t) and {Zn,Sn} is a
Markov-renewal process with kernel Y(t), then it is shown that {Xn,Tn} and
{Zn,Sn} are equivalent if and only if there is a certain homomorphism between
the matrix rings generated by Q(t), t ¢ [0,»] and Y(t), t € [0,»]. The
equivalence is identical to weak lumpability in the case where {Zn,Sn} is a
renewal process.

Although the conditions for strong lumpability can be written in an
attractive form, they are too restrictive to be of any real interest. Weak
lumpability is of more interest since (as will be shown) it occurs in less
trivial examples, but the necessary conditions are very complicated. The
equivalence defined herein has the advantage of having simple necessary and

sufficient conditions.




CHAPTER 1

1. Introduction. A random process (Xn’Tn) n=1,2,3,-.+ with Xn taking values

in a finite or countable set S (called the state space), and Tn taking values

in [0,o] is called a Markov renewal process (MRP) if

BEE =l T SRR R T e e B T _<:lxn)

n+l ol 30 Tops

for all n ¢ g+, jes, te [0,]. Markov renewal processes arise
naturally in queueing systems and since renewal processes and Markov chains
are special cases of MRP's, a large class of problems in the study of random
processes can be handled with Markov renewal theory.
Consider the departures from an M/G/1/N queue. Let Tn be the time between

the (n-l)St and nth

departure, and let Xn be the number of customers in line
the instant after the nth departure. It is well known [3 ] that (Xn’Tn) is a
MRP on a state space consisting of the nonnegative integers. Now consider the

special case where G=M. Since the M/M/1/® queue is an M/G/1/N queue, the

departure process is a MRP with a countable state space. By [1] and [3],

though, we know that in steady state the departure process from an M/M/1

queue is a Poisson process, which like any renewal process, is a one state MRP.
Thus, in some sense, the infinite state MRP that represents the output from an
M/M/1 queue is equivalent to a Poisson process. An enormous amount of work has
been done on systems with M/M/1 queues that never would have been possible

were it not known that the output from an M/M/1l queue is a Poisson process. Any
time it can be shown that a MRP is "equivalent' to a renewal process, the amount
of computation necessary to make statements about the process will be drastically

reduced. This paper is a first step towards getting such results.




when two random processes are called equivalent in this paper, it
means that certain specific conditions (to be given later) are satisfied
by the two processes. The conditions are strong enough to be of interest,

and weak enough to assure that there are plenty of examples.

2. Lumpability. Probably the simplest case of equivalence between MRP's is

lumpability in Markov chains [ 8]. Let {Xn} be a Markov chain on a finite or
countable state space S. Let Al’AZ’ ---,An be a partition of S, and let

F:S-{A ---,An} be the map that "lumps" the state space S onto the

1’A2’

partition [A.,A,, "-,An}. The process {F(Xn)} may or may not be a Markov

1°
chain. In general, the probability of going from A, to Aj in {F(Xn)} will

depend on precisely which element of Ai the {Xn} process is in. If for each
1 to Aj is independent of the
State in Ai that the {Xn} process is in, then the process {F(Xn)} is a Markov

i and j, though, the probability of going from A

chain. When this happens we say {Xn} is strongly lumpable to {F(Xn)}. This is

a special case of the equivalence to be defined.
For example, say S = {1,2,3} and let (Xn} have transition probability

matrix

i i 3
5 5 5
i i i
2 4 4
1 i 2
2 8 8

Let F(1)=4,,F(2) =F(3) =A,. The process {F(Xn)} is a Markov chain on {Al,A.,}

with transition probability matrix




1
2

N =

If {Xn} is strongly lumpable to {F(Xn)} then no matter which state in S
the process starts in, {F(Xn)} will be a Markov chain. In fact, even if the
precise state that the process begins in is not known, the ensuing {F(Xn)}
process is a Markov chain.

Sometimes, even though {Xn} is not strongly lumpable to {F(Xn)}, the process
{F(Xn)} is a Markov chain when {Xn} is in steady state. When this happens we

say {Xn} is weakly lumpable to {F(Xn)}.

If S is a finite set with m elements and F(S) has n elements Al’AZ’ --',An

(n < m), then the following m xn matrix, U, can be constructed. Let

b e {O,ifidAj,
~ij

1,if 1 € A,
3

If {Xn} has a steady state then there is a vector Il that satisfies NP = T
where P is the transition probability matrix for {Xn}. Let T be an n X m

matrix with

O’if j ¢ Ai’
I,. =
Ty .
—Ll— if j ¢ A .
I m
keA,
1

The ith row of Il is the conditional probability of being in state j given that

the process is in steady state and that the process is in Ai'
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Kemeny and Snell [ 8 ], show that {Xn}is strongly lumpable to {F(Xn)} if
and only if PU = U(IPY), and that if {F(Xn)} is a Markov chain then its

transition probability matrix is IIPU. They also show that TP = (IPP)! or

PU = U(IPU) is a sufficient condition for {Xn} to be weakly lumpable to {F(X_)!.
n
¢ For example let S = {1,2,3} and set F(1) = A, F(2) = F(3) = A,. Suppose the

transition probability matrix for {Xn} is

1 1 1
2 4 4
2 1 1

P = 5 > 0

Wl 3

~ 0 4 4

1 1 1
In this casen=(-§,§,§) so
i 1 0 0 1 0
I =

R T S ¥ and U = 0 1

{Xn} is not strongly lumpable to {F(Xn)} since P(F(Xn) =A1[F(Xn_1) =A2)
i depends o: whether Xn-l is equal to 2 or 3. This can be seen formally by noting
that PU # I}(]_‘[P U). In steady state, though, {F(Xn)} is a Markov chain since
e = (np I__I){I . The resulting Markov chain {F(Xn)} has a transition probability
matrix

1/2 1/2

=
o
'
"

1/4 3/4

The necessary conditions for weak lumpability are much less appealing than

the necessary and sufficient condition for strong lumpability or the sufficient

conditions for weak lumpability. If y is a probability vector on S then define

L =~ . . '




3 - i e . : .
fy]™ to be the vector of conditional probabilities of being in state j

(j=1,2, +--,m), given that the process is in Ai' For example, the ith row

th

of the matrix I is EF. Let Tj be the set of all finite sequences of states

3
-~

=)

F(S) that end with A,. If A, , A, ,*** A, , A, and A, , A, ,**+ A, , A,
3 )’ "ip i’ 73 d1t iz 3g" 4

are two elements of Tj then for {Xn} to be weakly lumpable to {F(Xn)} it must

be true that for each o €(1,2, *-+, n),

ieS BeA ieS BeA
o3 a
where
i i i 4t i 3
¥o = [ <= [EREEY * 2] 2 2] ° 31 ° -~ B © B
and
LU T T i
ye= [ eee LHILIEY 2P0 201 3 014 oo B 9 p)

Serfozo [10] showed that strong and weak lumpability can be defined for
MRP's in an analogous manner. In fact, the conditions for strong and weak
lumpability in MRP's are virtually identical to the conditions for Markov chainms.
1f {xn’Tn} is a MRP on a finite state space $ = {1,2,3, :-.m}, with

kernel Q(t) (i.e. Qi (t) = P(Xn_‘_1 = 34 T itlxn = i)) and F: S > {Al,Az,---,An}

3 n+l

is a partition of the state space then {Xn,Tn} is said to be strongly lumpable

to {F(Xn),Tn}if {F(X),T,}is a MRP.
Again, let T| be the steady state vector for the embedded Markov chain:

(i.e. 1Q(«) = 1), and let I,U be defined as before. Serfozo shows that

{Xn,Tn} is strongly lumpable to {F(Xn),Tn} if and only if Q(t)g = g(gQ(t)g)

for all t ¢ [0,=]. Likewise if for all t, Q(t)U = U(IQ(t)U) or NQ(t) = (MQ(t) )T

then {F(Xn),fn} is a MRP in steady state (i.e. weakly lumpable). Unfortunately,

the necessary conditions for weak lumpability are again very complicated.




Let Fj be the set of all finite sequences of states in F(S) that end with Aj'

-

oA, , A, and A, , A, , -+, A,  , Aj are two elements of s

; . sive : and
i1” 1y iy’ 3 1 iq

{tl, ty, -~-,tk}, {sl, Sy» ---,sq} are two sequences of positive real numbers
then for {Xn,Tn} to be weakly lumpable to {F(XnLTn}it must be true that for

each a ¢ (1,2, *++,n) and t e [0,=],

1 2
bk eier v 1 g oy

ieS BeA ieS BeA
a a
where . ; . 5 \
i i i 1 |
i e rnnnm aept 2 aent o)t oeace 1 F acel
-~ and
g iy i, i, 3y 5 i
Yo = [ -+ L[N © Qs 7 Qlsy)] 7 Qlsy)] Q(sq_l)] Q(sq)] .

In this paper a type of equivalence will be defined that includes all of
the cases discussed so far and has the added property that a necessary and
sufficient condition for two MRP's to be equivalent can be written in a simple

form.

3. Definitions and Preliminaries. The following concepts will be used

throughout this paper.

Definition 1.1. Let V be a vector space, and let T: V > / be a function on

V. A subspace W of V is said to be invariant with respect to T if for all

wel, Twe W

For example, say V is Bn and T(v) =Av where A is an n X n matrix. If

WisWy, 0, W are eigenvectors of A, then the space [ spanned by WeW

- R e

is invariant under T.




Definition 1.2. A ring, R is a collection of objects along with two

operations +, * that satisfy the following properties: y a,b,c € R,

(1) a+beR

(2) a+b=b+a

(3) (a+b)+c=a+(b+c)

(4) 3 0 € R that satisfies a + 0 = a
(5) 3 -a that satisfies a + (-a) = 0
(6) a - beR

(7) a + (b-ec) = (a*b) * ¢

(8) a - (b +¢) (a*b) + (a-c)

(9) (b+c) - a= (ba) + (c-a)

The operation - need not be commutative in a ring. For example, the set
of all n X n matrices is a ring. In this paper we will be interested in various

subsets of the set of all n x n matrices that retain all the ring properties.

Definition 1.3. Let {a;}, i €I, be acollection of elements of a ring, R.
The ring, A, generated by {ai} is the smallest subring of R that contains all
of the {ai}.

For example, consider the ring of integers Z. The ring generated by {2}
is the ring of even integers. For a less trivial example consider the ring,
N, of nxn matrices. Let Ml’MZ’ LGT Mk be elements of N. A typical elemen-t_

; 2 5.3
of the ring generated by Ml,Mz, see Mk might be MIMA + MGMZ - Mk

Definition 1.4. Let R, and R, be two rings and let T: R; = R, be a map.

T is called a ring homomorphism (homomorphism) if, va,b € Rl’




0

(1) T(a-b) = T(a) * T(b) and

(2) T(a +b) = T(a) + T(b).

Consider the fellowing example of a ring homomorphism. Let y be some
vector in Bn and let R, be the set of all n x n matrices that have y as a
left eigenvector. If A ¢ Rl’ define T(A) = a where o is the eigenvalue of 4
associated with y. Thus T(A + B) = T(A) + T(B) and T(AB) = T(A)T(B) so T is

a homomorphism from R, to R.

In this paper we will only consider a special class of MRP's defined as

follows.

Definition 1.5. An m state MRP, {Xn,Tn}, 1l <m< =, with kernel Q(t)

will be called simple if
(1) Qij(t) is nonnegative, nondecreasing and right continuous Vi,j,
m
(2) 'Z Q (=) = 1, ¥i,
(3) QiJ(t) = o, Vt € (-“so)y V i,3,
(4) 3! T e ~$ that satisfies

(43) 1Q(=) = 1

; (4b) MU =1

_! (4c) lim Q™(=) = U

n-> o

where U = (1,1, --gl)T.
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Concditions (1), (2), and (3) assure that Q(t)U is a column of nonnegative
distribution functions. Condition (4) is equivalent to requiring that the
embedded Markov chain {Xn} is irreducible, aperiodic and recurrent non-null.
(See [2] for proof of this assertion and other similar results.)

Let {X ,T,} be an n state MRP with kernel Q(t) and say the initial

distribution on the state space is II. The following quantities are of interest.

(1) P(T1 < t}Xo = i)
(2) P('I‘1 < t)
(3) P(’I‘1 2ty T2 2ty °°-,Tm < tm)

We can write (1) as

n
4y B(T; < e[X, = 1) = jzl P(Xy=3, T; < t|x, = 1) = (Q(£)V),
Thus the column vector Q(t)U is a vector of probabilities of a tramsition
before time t given the initial state. To solve for (2), we weight each

initial state by the initial probability distribution, so
(5)° P(T1 < t) = Io(t)U.

The iEh element of the vector IIQ(t) is the probability that starting
with the initial distribution II, the process has its first transition before
time t, and the transition is to state i. Likewise the ish element of the"
vector HQ(tl)Q(tz) is the probability that starting with the initial
distribution I, the process has its first transition before time tl’ its

second transition in less than t2 time units after the first transition, and

ends up in state i. Inductively, we obtain

(6) P(T; < t;, T, Sty et

m

Sk




e —
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In Chapter II we define equivalence between MRP's and investigate its
properties. Sections 1-4 deal with the important special case where the
equivalence is between a MRP and a renewal process (a2 one state MRP).

Section 5 deals with equivalence between finite state MRP's.

CHAPTER II

1. Equivalence. A recurrent renewal process {Sn} is a sequence of independent
and identically distributed nonnegative random variables with Sn < « with
probability one. The sequence {Sn} can be thought of as the times between some
fixed event that occurs repeatedly. Associated with each MRP, {Xn,Tn}, ig a
sequence {Tn}. Suppose {Xn,Tn} is a simple MRP on a finite state space

s = {1,2,°*-,N} with kernel Q(t). If Y is the initial distribution on § then

(1) P(T, < &) = ¥Q(£)U where U = (1,1, -+, 1), and

8 B, 5 ks T Ry st

LSt = Qe Qlty) <o Qe )T

Let T be the steady state vector associated with the embedded Markov chain

{Xn}, and define r(t) = NQ(t)U.

Lemma 2.1. r(t) is the cumulative distribution of some nonnegative

random variable.

Proof. From conditions (1) and (3) of Definition 1.5, r(t) =0 if t< O
and r(t) is nondecreasing and right continuous. From condition (2) we have
r(®) = NQ(*)U = TU = 1 so r(t) is a distribution function of a nonnegative

random variable. g




| —
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For the remainder of this chapter all MRP's will be assumed to be simple,
and all the renewal processes will be recurrent. The following theorem

motivates the definition of equivalence between a MRP and a renewal process.
Theorem 2.2. 1If {Xn,’rn} is in steady state then {Tn} is a renewal process
if and only if Vm, th,tz, "t ﬂQ(tl)Q(tz) it Q(tm)U = r(tl)r(tz) . r(tm)-
Proof. (=) if {Tn} is a renewal process then P(T; < £, Tp 2ty o t)
= P(T) < ty) P(T; < t))° " P(T, < t ). But this says
IZQ(Tl) Q(tz) . --Q(tm)U = r(tl) r(tz) '--r(tm).
(<€) We must show that {Tn} is a sequence of nonnegative independent and

identically distributed random variables. Since Q(t) > O it is clear that {Tn}

is nonnegative. Also r(t) is not a function of n, so it suffices to show that

{Tn} is a sequence of independent random variables. Let 11,12, "'in be any

n positive integers. We must show that

BT, <t. ., T, <t = T <k Yow PAT ct ) B(E, <t ) “"°P(T, <t )
i 1% "19="45" da ™ Lo 1= 4 i,="1y i,~1

3 (e | 2 n n
Since
P(Til_gtil, Tizitiz,'--,Tinf_tin) = P(T, < ty, 'rzgtz,...,'rj S Bgavevaly, 2 ty )
E where
2 £y 51t 3= 1
. ik k
s ™
J
g ® , if j é (ilyiz’ i in) s
we have P(Tlitl’ Tzitzg..., Tinitin) = r(tl) r(tz) e r(tin)' But

r(ty) r(ty) *- r(ty ) = r(ty,) r(tiz) + v(ty ) since r(=) = 1. Thus {T } is

a renewal process. (m]
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From now on the following notation will be used. The symbol Q will denote
a simple MRP with kernel Q(t). The set of matrices {Q(t)}, t e [0,], along with 1
an initial probability distribution on the state space, describe the MRP in
cuestion, since from them it is possible to determine all transition probabilities.
Thus, there is no ambiguity in using the symbol Q to denote a MRP. Likewise, the

syvmbol r denotes the renewal process with distribution r(t) without ambiguity.

Definition 2.1. Let Q be a simple MRP with steady state vector II, and let

r be a renewal process. Then Q is equivalent to r Q-r) if

(3) V¥n, t1s tp tot L, HQ(tl) Q(tz) Q(tn)v = r(cl)r(tz) r(:n).

By theorem 2.2, Q is equivalent to a renewal process if aAd only if {Tn} is
a renewal process in steady state. Thus equivalence and weak lumpability are
the same thing when the lumping is to one sgate. From the definition it is
clear that Q~r implies that r(t) = NIQ(t)U, which is the steady state distribution
of the time between state transitions in Q. The reason that the steady state

vector II is used in the definition comes from the following theorem.

Theorem 2.3. Let Q be a simple m state MRP (m < =), If there exists a

probability vector, Y, and a renewal process, f, such that
¥, ).ttt YQ(E)QE,) - +QUE DT = £(E)E(e,) -0 £(E ),
= then £(t) = r(t), ¥t (di.e. YQ(t)U = NQ(t)U, Vt). .

Proof. We split the proof up into two parts.

s (case 1: m < =), We know that

-

4l

T
lim Q"(=) = Un =|-| ,
N> =

i

and so V¢ > 0, IN such that if n > N,
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may 'Q?}l(x) - Ejf < ¢/m. Thus the jth column of Qn-l(«) is (al,az,...,a )T

1,3 .

where :ai - Zj‘ < ¢/m for each i. Thus

i (2em )
< 1lvley = ml 2 e/m Y, = €/m.
A k=1 K

This says that each element of the vector YQn_l(z) differs from the «
corresponding element of T by less than ¢/m. By hypothysis,
vQ(tl)Q(tz)"Q(tn)U = f(tl)f(tz)-'f(tn), o by letting &ty = t, = rem it == ﬁ
we getYQn'l(w)Q(ggll-f(tn). Let YQn-l(N) =1“. To show that f(t) = r(t) it
suffices to show that [1°Q(t )U - HQ(tn)U] is small.
|77Q(t U - 1Q(e)U| = {& - 17[Q(t )V < e/m UTQ(tn)U < e/m UTU = e.

Since & was arbitrary we have r(t) = £(t).

@ - -}
(case 2: m=%). Fix € and choose N such that z Yy < ei7, z Hi < ef7.
i=N+1 i=N+1

Since Q is simple we have 1}3 ng(w) = Kj Vi, so we can choose M such that n > M
o

implies |Qfj(=) - njl < g/7N for 1i,j < N.

We must show |[f(t) - r(t)| is small, Vt. Since f(t) = YQ®(=)Q(t)U for
any value of n, it suffices to show that for n > M, IYQn(m)Q(t)U - r(t)| is
small, Vt. Since r(t) = TQ(t)U,

- YQR(=)Q(e)U = r(t)| < |[vQ"(=) - mjQe)U < T [vQ¥(=) - 1l

- j=1 )
= ] = =0+ ] |y -1l
3=1 j=N+1
= We have,
T Iv? I I ova = Ty 110 |
L Q=) = nf, £ 1 @ v lQ(=)-n =}« Q.. (=) - I
j=1 J= jup gm1 14 = R 3




N X - ; N 2 :
= 7 v, Tl -8+ J v, ¥ |q (= -1l
go1 * je1 H T S e 3
X N i B N
2 L Yy L ehR%® ) Vg () Qij(x) + )R < e/7 + 2e/7 = 37,
i=1 * j=1 i=N+l * §=1 j=1 1
Also,
P bt -aml, s 1 Gofen, 4 ] Bymidi=: | (vq“@))j R
J=N+1 37 jeN4l j=N+1 j=1 j=N+1

N 2 S
sh+elt= ] ] ViQ5(=) 21+ /7 - e ¥41Q45 (=)

j=1 i=1 j=1 i=1
N XN N N

SRh*eeit- ] JvG, el =t el =} . ] E -0
j=1 4=1 1 J i=1 1 g4=1 1

S1+¢ell - (=e/TNQ =-¢€/T7T=€l7)=1+¢/l]-1+3e/7 - 2:2/49 < 4el7.

Thus [£(t) - r(t)| < ] [vQ"(=) - T
31 !

< 3e/7 + 4e/7 = . D

2. Conditions for Equivalence. We are now ready to find the conditions for

Q~r.

Theorem 2.4. Let Q be a MRP with steady state vector I, and let r be a

renewal process. If Vt, NIQ(t) = r(t)I then Q-r.
Proof. If IIQ(t) = r(t)Il then Vn, tl’ tss ceegt

n

% mQ(t;) Qlt,)- - Qe U = r(t;) MQ(t,) **+ Q(t )V

-r(tl) r(tz) v r(tn)HU = r(tl) r(tz) cee r(tn).
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Thecrem 2.5. If Vt, Q(t)U = Ur(t) then O-~r. 5‘
Proof. If Q(t)U = Ur(t) thenVn, t;, t,, "t , ﬁ

TQ(e)) QCt,) +++ Q(E T = TQ(eg) QCE,) *++ Qe )V T(E)

= nUr(tl) r(ty): - r(tn) = r(ty) r(t,) --- r(t). O

Theorems 2.4 and 2.5 are special cases of the sufficient conditions for
weak lumpability that Serfozo gives in [10]. Theorem 2.4 says that if
the steady state vector, I, is a left eigenvector of Q(t) for every t then Q-r,
where r(t) is the eigenvalue of Q(t) corresponding to the eigenvector II. Notice
that in theorem 2.5 it was not important that the starting vector was 1. Any
vector that satisfied YU=1 would have worked. This is because Q(t)U="Ur(t)
is a necessary and sufficient condition for strong lumpability of Q to r.
Theorem 2.5 says that if the row sums of the matrix Q(t) are the same for all
t then Q-r where r(t) is the common value of the row sums of Q(t). If the row
sums of Q(t) are the same, then no matter which state the process is in, the
time until the next transition has the same distribution. Thus, knowing the
state that the process is in gives no extra information about the time until
the next transition. It is clear that in such cases the times between state
transitions is a renewal process. The intuitive justification for theorem 2.4
is less obvious, but most interesting cases of equivalence seem to be of that
type. We will see later that Burke's theorem is a simple corollary of theorem 2.4.

Let Q be a MRP with n states (1 < n < =), and steady state vector . We

define the following subsets of gn.




17

Definitions 2.2.

(A) Let S ={ve gn: vQ(t)U = (vU) r(t), Yt} where r(t) = nQ(t)U.

(B) Let V be the largest subset of S that is invariant under multiplication

by Q(t) (i.e. v e V=Vr, vQ(t) e V).
(C) Let P= {veg R": v > 0, vU = 1}. P is the set of probability vectors.

(D) Llet K= VnP.

Lemma 2.6. S and V are subspaces of Bn. K is a compact and convex set
if n < =,

Proof. Clearly {II} ¢ S and {0} ¢ S, so S has at least two elements. Say
Yi» Yo € S. Then YlQ(t)U = r(t)(YlU) and YZQ(t)U = r(t)(YZU). Thus
(a Y1+bY2) Q(t)U = r(t)(a Yl+bY2)U S0 ayl+byz € S. Let [ be any invariant
subset of S and let W* be the subspace generated by /. Say w e U*,

k 1 k k '
w = 1§1 a; w, where w, € W i=1,2, ++« k. But wQ(t) = 121 aiwiQ(t) = izl a;w,
where wi ¢ W since W is invariant. Thus wQ(t) € W%, so W* is invariant. Since
V is defined to be the largest invariant set, it must be a subspace.

The set P of probability vectors in Bn is closed convex and bounded. So is

PNy since V is a subspace, thus K is compact and convex. u]

Consider the column vector Q(t)U. If v € S then -(vlqu(t)U = NIQ(t)U, Yt.

This says that ( (—\:217 - M) Q(t)u = 0, Vt, which says that the vector —(-‘};E -1

is orthogonal to the vector Q(t)U, Vt. Thus we have the following important

lemma.

Lemma 2.7. If Q is an n state MRP and there exists times tl,tz, it ™

such that {Q(tl)U, Q(tz)U, Q(tn)U} is a linearly independent set then S

is the subspace of R" generated by {II} .

m'—ﬂ
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Proof. If v € S then ( —(‘TVIT)- - 7) must be orthogonal to each Q(t)U. But
only the zero vector can be orthogonal to n independent vectors in l_in. Thus

the only elements of S are the points on the line through T and the origin. (u]
We now show the importance of the sets V and K.

Theorem 2.8.. Q-r &= TN e V.

Proof. (=) 1If Q-r then V“,tl’tZ’.“’tn’ IIQ(tl) Q(tz) Q(tn)U
= r(tp r(ty) --- r(tn). Say nQ(tl) Q(tz) == Qle ) ¢ S. Then 3t such that 1
IIQ(t:l) Q(t,) - Q(tn) Q(t)U # (KQ(tl) Q(tn)U) r(t). But this says that
Q+r. Thus ¥n, tl’tZ’“"tn we have HQ(tl) Q(tz) Q(tn) e S. Let

W= {wiw= IXQ(t:l) Qty) -+ Q(tn) for some n,t,,t,, "',tn}. W must be a
subset of S, and clearly W is invariant under multiplication by Q(t). Thus

W< V. But I ¢ W since NMQ(») =1, so T e V.

(S=) IfNiecV thenT ¢ K. Let ve K. Since each element of Q(t) is
nonnegative, vQ(t) > 0. Also vQ(t) = v' where v' e V. Finally, vQ(t)U =r(t)

since v € K so v'U = r(t). This implies that v(-g—g% ) e K, so K is invariant

under multiplication by Q(t) /r(t). Thus IIQ(tl) Q(tz) Q(tn)U = r(tl) r(tz)--- r(tn). &

Corollary 2.8.1. Q~-r <=1 ¢ K.

Proof. If Ne KthenTlelV so O~r. If Q-r then T e¢V. But MU = 1 so

Theorems 2.4 and 2.5 were sufficient conditions for Q-r which are

relatively easy to use in practice. Theorem 2.8 gives a necessary and
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sufficient condition but there is not yet any simple way of determining what

V is. The following theorem is a necessary condition for Q-r which is also

useful in practice.

Theorem 2.9. If Q is a finite state MRP then Q-r =>r(t) is an

eigenvalue of Q(t), Vt.

Proof. 1If Q-r then I € K, so K is not empty. We have shown that if Q

is finite dimensional then K is compact and convex and invariant under
multiplication by Q(t)/r(t). Thus by the Brower Fixed Point Theorem [9],

YE, 3\'t such that y, ¢ K and yt(Q(t)/r(t)) = e This says YtQ(t) = r:(t:)yt

t

so r(t) is an eigenvalue of Q(t). o

Corollary 2.9.1. Q-r => det(Q(t) -r(t)I) =0, Vt.

Proof. This is just a restatement of the theorem. (]

Although it is unrealistic to check to see whether r(t) is an eigenvalue
of each Q(t), theorem 2.9 says that one can show that Q;r by merely finding a
value of t where r(t) is not an eigenvalue. The following theorem is useful

in the same way.

Theorem 2.10. If Q is an n state MRP (n < «) and Btl,tz, "',1:u such

that {Q(tl)U, Q(tz)U, "',Q(tn)U} is a linearly independent set then

Q-r <=>1Q(t) = r(t)m, Vt.

Proof. By lemma 2.7, S is a one dimensional subspace, so either | = §
or = {0}. By theorem 2.8, Q.r =P Il ¢ |/ so K must consist of the single
vector {Ii}. Since K is invariant under multiplication by Q(t)/ r(t) we have

mQ(t) = r(t)l. The converse is a restatement of theorem 2.4. (a]




and T —————

Using the results so far, a rough algorithm for determining whether a

MRP is equivalent (or weakly lumpable ) to a renewal process can be formulated.
First of all, if a MRP, Q, is equivalent to a renewal process, the renewal
process it is equivalent to must be r where r(t) = NQ(t)U, and I is the steady
state vector of the embedded Markov chain Q(«x). The first step should be to
try to show that Q+r since in general that will be the case. If Q is an n
state MRP choose tl,tz, '--,tn randomly or otherwise and compute

{Q(ti)U, ---,Q(tn)U}. If {Q(tl)U, ---,Q(tn)U} is a linearly independent set
(as it will be in general), then Q-r if and only if Il is a left eigenvector

of each Q(t).‘ Choose some t and perform the multiplication IIQ(t). If this
product is ﬁot r(t)Il then Qfr. If NQ(t) = r(t)Il the chances are it was not a
coincidence. See if I is indeed a left eigenvector of each Q(t) by writing
out explicitly NIQ(t) as a function of t. If I is a left eigenvector of each

Q(t) then Q-r.

If {Q(tl)U, "5Q(tn)U}nms not a linearly independent set, it bécomes more
complicated. If dim{Q(tl)U, "',Q(tn)U} = 1 check tc see if U is a right
eigenvector of each Q(t) by summing the elements of the rows of Q(t). If the

2 row sums of Q(t) are the same for all t then Q is strongly lumpable to r which
implies equivalence.

Another way of trying to quickly show that Qfr is as follows. Choose ty

5 nQ(ty)

and t, and perform the multiplication (I - _;TEIT )Q(tz)U. If T ¢ K then .

so is NQ(ty)/r(t3). But for any v, and v, in K, (vi=v,)Q(t)U =0 ¥t.

Thus if the result of the multiplication is not zero then Q+r.
If no conclusion has been reached yet then either try different values
of time or attempt to find the subspaces.S and V. Finding S is easy, finding

V is much more difficult. The next section gives a more abstract description of

V and K.

.i.illlIlIlI-IIIIlIIlIIIIIIIlIIlIIllllIIIlllllIlIlllllIllll-luillll-I!iI--l-L




3. Equivalence as a Homomorphism. Let Q be an n state MRP (1 < n < =) with

steady state vector Il. Associated with each t ¢ [0,»] is a matrix o(t).
Let Q be the ring of matrices generated by {Q(t)},t e [0,=]. For each

probability vector y in gn we have a map FY: Q-+ R where
(4) FY (A) =YAU.

A necessary and sufficient condition for equivalence can now be written in a

very simple form.

Theorem 2.11. Q-r @Fn is a homomorphism.

Proof. (=—>) If Q-r then Vn, tl,tz, veesl s IlQ(tl) Q(tz) Q(tn)U =

(nQ(tl)U)(nQ(:z)U) ©re (IQ(r )U).  Also if A),A) € Q then M(A; +4,)U = TA,U+TAU

so FH is a homomorphism.

(&—) If FII is a homomorphism then Vn, tystys ORI E

n

mQ(t;) Q(t,) -+ Q(E DU = (1Q(£;)V) (MQ(E,)0) - -+ (MQ(E DT = (e ir(ey) --x(e ),

so Q-r. o

Theorem 2.11 says that the question of whether or not a MRP is equivalent
to a renewal process is identical to the question of whether a certain map
from a matrix ring to the real line is a homomorphism. If there were a good way

of deciding when there are homomorphisms between matrix rings and the reals

the analysis of equivalenée between simple MRP's and renewal processes would be

complete. This is certainly a deep question that will demand more research.

The maps {FY} also give an alternate characterization of the sets K and V.




Theorem 2.12. y ¢ K <= FY is a homomorphism.

Proof. (==») 1f y e Kthenl ¢ K, so Q~-r. Thus F_ is a homomorphism.

But KC S , and from the definition of S, FT’ = FY'

(&) Let T = {vivQ(t)U = (vU) vyQ(t)U}, and let

) = . = e e coe 13
= {w:w YQ(tl) Q(tz) Q(tn) for some n,t,t,, et

W is a subset of T: for if not, there would be some tl,tz, "-,tn such
that YQ(tl) Qty) " Q(tn) ¢ T. But this would imply that for some t,
YQ(th(t2)°'°Q(tn)Q(t)U # (YQ(tl)°"Q(tn)U)(YQ(t)U) which says that FY is

not a homomorphism. The steady state vector must be in the closure of W

since II = 1im. an(w), thus Ve > 0, 3w ¢ W that satisfies ]w-RlU < g
n-#w

Also w can be chosen so that wU=1 since YQn(ﬂ’)U= 1, vn. Thus

ImQ(e)U - yQ(e)u| = |TQ(r)u-wQ(t)U| = [T -w|Q(t)T < |Hi-w|U < €.
Since € was arbitrary, NMQ(t)U = yQ(t)U so T € T . But if I € T then 7 = S,
so vy € K. o

If we allow l-‘Y to be defined for any vector y in 13“, then by a similar
argument it can be shown that V is the set of all vectors, v, that make I-‘v a

homomorphism.

4. Examples.

EXAMPLE 1. Disney, Farrell and DeMorais [ 3] show that the output of
an M/D/1/1 queue is a renewal process. Tue results obtained thus far allow
for a quick verification of this fact.

The output process from an M/D/1/1 queue is a two state MRP with kernel

Qe) =
Qlo(t) Qll(t) ’




where Qi

j(t) is the probability that

(A) a custcmer departs at time zero leaving i customers in the queue, and
(B) the next departure is before time t, and when that customer leaves

there are j customers left in the queue.

If arrivals are Poisson with rate A, and the service times are deterministic

with rate d, then

0, if t <d,
%® = T
J Tal i LT L TR
0
0,if t <d,
Qq, (8 = ) t=d
J P (1-e-)‘d)ds = (l-e-xd) (l-e-}‘(t-d)), if t > d.
0
b 0,if t < d,
Qo(t) =
e yf ¢ >d.
0, 1f € < d,
Q (e = L
1-e i ¢ > 4.

Thus,
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e-}‘d (l-e-k(t_d)) (l-e-kd)(l-e-x(t-d))
Q(t) = 1 (v)
-Ad -\d (d,*)
e l-e
where
0,if t < d,
1 (t) =
(2ye) L E R

The embedded Markov chain is

=Ad =Ad
e l-e
1 Q=) =
e-xd 1- e-Ad ;
Ad =-Ad

so the steady state vector, I = (e =, 1-e ). Performing the multiplication

nQ(t), we get
m(e) = (1-eHe?, a-e?Ha-e?yy 1@ = a-eH 1 (o
(d,*) (d,=)
By theorem 2.4 we know that Q-r where r(t) = (l-e-M’) 1 (t)
(d,~)
EXAMPLE 2. Burke's Theorem [] ] implies that the output from a steady state
] M/M/1 queue is a Poisson process. The output process is a MRP with kernel Q(t)
= where Qij(t) is defined exactly as in the first example, except that in this

case i and j range over all the nonnegative integers. If the service rate is

M, and the arrival rate is A then Q(t) has the form




qo(t) ql(t) qut) q3(t) qa(t)
£,(8) £,(0) £,(t) £4(t) £,(t)
0 fo(t) fl(t) fz(t) f3(t)
0 0 fo(t) fl(t) fz(t)
0 0 0 fo(t) fl(t)
0 0 0 0 fo(t)
where
t j k|
fj(t) = J -(;—?L e-)‘s ue-us ds --—)‘—‘-'-:H—l - u)\j e
0 i (A +u)
(t) = [txe-ks f.(t-s) ds
b j
0
h |
Ay =it j+1 -t 1
& —— (l=e ) - A e
Oy d*L k=0 ()t 37K
. J o3-k e-(x+u)t ¢J-k-p

k=0 p=0 (F-k-p)! (A+u)

<+
k+1 up

25

c

k=o (§-k)!(+u)E*?

Because of the special structure of Q(~), it can be shown that the steady state

vector, Il = (l-p)'1 (l,p.oz, 0,

nQ(t) we get

+++) where p = A/u.

Performing the multiplication
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=k k+1
M)y = (1-0)"" (g () + kzo Ei(® e )

= (e B3 Gep Ly 0d = (re

This says that the steady state output is a renewal process with distribution

3 W

EXAMPLE 3. Now consider the M/M/1/N queue.

is an N+1 state MRP with kernel Q(t) =

q, (t) qz(t) R P
£,(0)  £,(8) - - - £,
Eglel BgCe) TUEE B

0 fo(t) DO 4

0 o - . - fo(t)

where qj(t) and fj
N _ l-p 20 3 N

o
_oWl

5 1

If the steady state output from the M/M/1/N queue is a renewal process

then the renewal process would have to have distribution

e )

—At) m

5

-]

L
d=n

-]

) E
d=n
-]

)£
d=N-1

o

Yy K
d=N-2

;

I £

j=1

(1,0 p° 07, +oeyp -l,k), where k = o} +

-At N+1 & HE

rN(t) = HNQN(t)U =]1- N +

1-p 1-p

The output from this queue

j(t)
j(t)
4(0)

j(t)

j(t)

(t) are as in the last example. The steady state vector
e H t pN‘#‘l




Assume I ¢ V. Then ¥, HNQN(x) e V. sSince V satisfies

gt Q (%)
rN(x) E

I'.N.)QN(t)L' =0,vt.

woe W ==n1( vlL -n") 1 QN(t)U, Yt, we must have (

. QN(t)U has the form (a,b,b,b, ***,b) where a and b are positive, thus

Q (x) -AX -Ax N-1

e 1-o l-e _ 1-o l-e” of
(x) - ) Q(e)U m; N_,_1( e 1)a+1-bN+1( =) )biz1
-Ax N+1
3 1=-0 N -Ux P
+ ( (e +e . oy )- P )b i
1- N+1 rN(x)

Since ry(x) < l-e_)‘x, each term in the expression for
N .
T"Q(x)  y &
S ol ) Q(t)U is strictly positive, so I ¢ V. Thus by theorem 2.8,
N

the output of an M/M/1/N queue is not equivalent to any renewal process. (See [3].)

5. Equivalence Between Finite State MRP's. Let Q be a k state MRP with

steady state vector I, let Y be an m state MRP (m < k), and let {A Az, Am}

*a be a partition of the states of Q. Let T be an m x k matrix defined by

0, 42 3¢ &g,

2 : Iys - nj/
%0

aeAi

if je A -

a’ - s

- and let U be a k x m matrix defined by

0,1if i ¢ Aj’
43

l,if 1 ¢ Aj .

- %
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IQ(t)V is an m x m matrix whose (i,j) element is Pp(X, ¢ Aj’ T, < t!Xo €Ay,
Say F is the function that maps the state space of Q to {Al’A°’ -v-,Am}.
Serfozo [10] shows that if {F(Xn),Tn} is a MRP, its kernel is 1Q(t)U.

The definition of equivalence between a MRP and a renewal process has a

natural generalization to equivalence between two finite state MRP's.

Definition 2.3. Let Q be a MRP with state space {1,2, --.,k} and steady

state vector . Let Y be an m state MRP (m < k). Let F:{1,2,---k} = {Al,f-',Am}
be a partition of the states of Q, and define Il and U as above. We say Q is
equivalent to Y via the partition F, (Q E Y) if ¥n,t e

g sk

IQ(t;) Q(t,) +++ QDU = ¥(£)) ¥(t,) -+ ¥(t ).

Before attempting to produce conditions for this type of equivalence we
should know what this equivalence means. In the case where Y has one state

(a renewal process) we showed that equivalence is the same as weak lumpability.

If Q is {xn,'rn} and Y is {zn,sn} then definition 2.3 says that for each

i,3 ¢ {1,2, "'9m}) and vn, tl’ s tna

& Pp(Ry € ATy St 000,12 6% € A = P(Z =3, S, <t 005 8 yl2p= D),

For weak lumpability between Q and Y we would need that for each

i,j ¢ {1,2,..-m} and Vn,tl,tz,---,tn, 11,12 e in-l e {1,2, **+ m},

(2) PriX e Ay, X e Bp® TR A T Sl g t) 1%, € 4)

= PEasdy Bpgtlegy G Rh S S b, o8y 2 (25,

It seems inconceivable that every Q and Y that satisfy (1) would also

satisfy (2) but all attempts to find a counter example have failed so far.

We can show that weak lumpability implies equivalence, though.




Theorem 2.13, If Q is weakly lumpable to Y via F then Q}: Y.
Proof. Let Q be {X_,T_} and Y be {Z_,S_}.
—_— n®“n n’“n

(FQ(e))**+QUE V) ;o = PR ) =3, Ty <t oonTy <ty [F(Xp) = 9)

k k k
4 = F e i ORE@) =S, BRI R By = 4y,
i =31, =1 & =1
1 2 n-1 : s
TS tatt ol 5 tllF(}.o)-i)
K K
= ]l Rp(mpost s Ty < 6 |[FO)) =5, F (X)) =1, F(X) = 4)
f=14 ) =1

P (F(X ) =3, »F(X) = 4,| F(X) =1).

Since Q is weakly lumpable to Y we know thatin steady state, F(Xn) is
a MRP with kernel Y(t) so

PR, Sty TS BIFE IS5 F(x ) = 1)

; SR SR Y (t,)
Coarl R e 8

Y @ “ © ., (=

L0, ® Ty O RS

By and

(w) ese Y (Q).

Pn(F(xn) =3, ”’F(Xl) = illF(Xo) =i) = Yi,il(”) Yil!iz in-l’j

Thus -

Y
o . z —1.).. g in-l’j(tn)

Y oy "
£ 1 %1 i Y ;@

= (1Q(ty) Qe D)

k
ij = 112_

k k

= Y (). Y (E) = (¥ (te) Y(ta) *or Y(E D)., s
4= 1,.1=1 e B 1103 m : ¢ n) 1] "
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Since the definition of equivalence between finite state MRP's is

analogous to the definition of equivalence between a MRP and a renewal process,

one might assume that the conditions for equivalence would be similar. First
of all, by theorem 2.13 any sufficient condition for weak lumpability will

also be a sufficient condition for equivalence, thus we have

Theorem2.14. If Vt, NQ(t) = Y(t)], then Q ©

@
<

!
<

Theorem2.15. If vt, Q(t)U = UY(t), then Q ©

Theorems 2.14 and 2.15 can be proved the same way theorems 2.4 and 2.5 were

proved. They can also be found in Serfozo [11].

Assume that for each t, Y(t) is an invertable m x m matrix (m < «), and
Q(t) is a k x k matrix (m < k < ). Q(t) need not be invertable. Let M be

the set of a2all m x k matrices, M, with M

ij

> 0 and MU = oI where o is a scalar.

| : In other words M must have the form

‘Xx..

X'O
O

= and each row sum must be the same.
- 1f ¥(6)™} 1(t) ¢ Mthen it must be true that Y(t)"'IQ(t)U # I which -
says that Q(t)U # Y(t). Thus a simple necessary condition for equivalence
- is that Y(t)'ng(t) e M.
Let S = (M ¢ M: MQ(t)U = (MU) Y(t), Yt} and let V be the largest subset

of S that is invarient under multiplication by Y(t).1 on the left and Q(t)

on the right (i.e. M ¢ V = Vt, Y(t)-lMQ(t) eV). Let K= (M¢e V: MU = I}.
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These definitions are analagous to the definitions in Section 2 and not too

surprisingly we have

Theorem 2.16.: Q Fs <1 e K.

4 - Proof. (==>) Assume I ¢ K. Then Eltl,tz,-",tn such that
Y(tn)-lY(tn-l)-l"'Y(tl)’ng(tl)Q(tZ)"t Q(tn) ¢ M. But that says It so

that ¥(e )™l ¥(e) Qe Qe ) QBT £ ¥ ()T - v 0ce ) e ace )
But if Q Fy then Y(t:n)'1 Y(tl)'ng(tl)--'Q(tn)g =1 so
QQ(tl)'-‘Q(tn)Q(t)y # Y(tl)"'Y(tn)Y(t) which is a contradiction.
(€=) 1If T e K then ¥n, t),t e Y(t ) 1re-¥(e)THQ(E,) -+-QCE )T = 1, so
QQ(tl)'--Q(:n)g = Y(tl)---Y(tn). o

In general Y(t) will not be invertable for all t. This poses a serious
problem. In the renewal case this problem did not exist since r(t) was a
scalar, not a matrix. For equivalence we need nQ(e) = Y(t)I' where in some
sense [I' acts just like . Unfortunately, if Y(t) is singular we cannot solve
for II' uniquely, and we therefore have trouble defining the sets V! and K.

= Another result that carries over from the renewal case rather easily is that

equivalence is identical to a certain ring homomorphism.

Let Q be the ring gemerated by {Q(t)},t € [0,],and let ¥ be the ring

.= generated by {Y(t)}, t ¢ [0,2]. Define L P Q+Y to be ¢ F(A) = TlAp.
A s t]

Theorem 2.17. Q e g% g is a homomorphism.
’

The proof here is identical to the proof in the renewal case.

One result that has no counterpart in the renewal case is




"on II by the partition GoF. First of all, if GeF(j) # i then (!Ggp)

Theorem 2.18. Let Q, Y and D be k, m and ¢ state simple MRP's (k > m > 1).

e
1ol vand® %D theng ©F p,

To prove this theorem we need the following lemma.

Lemma 2.19. If Q ¥ Y and I is the steady state vector for Q then the
steady state vector for Y is y where y, = Z . (i.e. vy =10U).
< 5§ -1 p
peF “ (1)

Proof. Since the steady state vector is unique in the class of simple

MRP's, it suffices to show that Y satisfiesYY(®) =Y.

Since
0, 1f § ¢ F (1),
n
B = -—-———iLﬁ;— ,if § e FL(D),
peF-1(i) P
we have

YY(®) = yIQ(=)U = MQ(=)U = U = y. O~

Proof of Theorem. Let J be the steady state vector for Q, Y the steady

state vector for Y and let EF

F and G. We first show that IGBF = gcor where BG°F is the £ xk matrix induced

and Yo be the matrices induced by the partitions

i = 0..

If GoF(j) = i then since each column of XG and EF has only one nonzero element,

there is some b such that (IGQF) From the lemma,

15 = 06 1 TRy

Z Mg 1
( ) Yk ael"'l(b) ‘CF-l(b) a
Y = = -
i I v e m
peG-1(1) peG-1(1) qeF~1(p) qe[GeF)~1(4)




| ; ;
(y.T.).. = i acF~1(b) Iy ¢ I
<G~F'ij ; 7 i : i ; nq
{ qe[GeF])~1(4) |L acF~1(b) qe [GoF]~1(1)
Thus,
0, if GeF(j) # i,
(Y Tl = s
~G~F'ij % T if GoF(j) = i ,
q
qe[GoF]71(4)
SO

Yely = EG°F as desired.

If we let Up be the k x m summing matrix associated with F, and Y% be
the m x £ summing matrix associated with G, it is easy to show that

U0, =1 where U

Urle = Ygor F is the k x £ summing matrix associated with GeF.

Ge
since Q T ¥, Va, £y, tyeeet , TRQ(e;) Qe )l = Y(t) - ¥(e).

G
Also, since Y ¥ D, IGY(tl) °-Y(tn)§G = D(Tl)D(tz) -D(tn). Thus

YGHFQ(tl)"'Q(tn)yFDG = D(tl)"'D(tn). But this says

TopQ(t) " *QUE DUg,p = D(E;)*D(£ ), 80 @ =F . @

There are several open questions on the topic of equivalence between
finite state MRP's. Among them are finding an example of two finite state
MRP's, Q and Y, that are equivalent but not weakly lumpable; and finding

conditions for equivalence when the matrices Y(t) are allowed to be singular.
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- B G Go
If Q - Y and Y -~ D, then we have shown that Q -FD. Now suppose Q 4 Y and

G - Koo x
¢ - D. Under what conditions is there a partition, H, such that Y e D?

In other words, when is there an H that makes the following diagram commute?

6. Equivalence on a Subset of [0,x]. We return now to equivalence between a

MRP and a renewal process. Say Q is an n state MRP with steady state vector &,
r is a renewal process and Q ~ r. Let Q' be another n state MRP that has the

property that t < T implies that Q(t) = Q'(t). 1If t < T d=1.2, «*k then

ﬁQ(tl)'--Q(tk)U r(t,) --r(t But since Q(t) = Q'(t) for t < T we also

) dle ),
have HQ'(tl)"’Q'(tk)U = r(tl)---r(tk). Although it is possible that Q' < r
(in fact T might not even be the steady state vector for Q') we do have a sort
of equivalence between Q' and r on [0,T].

- The motivation behind this section is that in general a MRP, Q, is not
equivalent to any renewal process and therefore computing probabilities of
successive interdeparture times involves matrix multiplication. If there is

i some BC R such that if t;,t,, -t € B then P(T1 Sty S y)

P(T1 < tl)P(T1 :-tz)"'P(Tl = tk), computing probabilities would only involve

scalar multiplication (so long as all the times are chosen from B). Also, it

seems interesting to consider the concept of a MRP acting like different

renewal processes on different subsets of [0,=].
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Definition 2.4, Let Q be an n state MRP and let r be a renewal process.

We say Q ~ r on A if Iy such that y > 0 and Vk, and V:l;",tk ERlAY

yQ(tl)"'Q(tk)U r(tl)---r(tk).

Notice that if Q ~ r on A then Q ~ r' on A for any r' that satisfies
r'(t) = r(t),Vt ¢ A. For an arbitrary MRP, Q, one can always construct a
set B& R such that Q - r on B for some r (although sometimes B will consist

of only one point). C(hoose some t ¢ [0,»]. By the Perron-Frobenius theorem,

there is a largest positive eigenvalue, a(t) < 1, of O(t) and an associated
eigenvector v(t) that satisfies v(t)U = 1. Let B = {s: v(t) Q(s) = a(s) v(t)} .

Clearly Q ~ a on B.

Definition 2.5. If {AS},E € J,is a cover of [0,x] (:f..e.L.,AB = [0,=]),
B

and for each B ¢ J there is a renewal process Tg such that Q -~ rB on AB
then call {AB} a renewal-cover of Q.

* Such a cover exists for any Q since if necessary there can be a different
renewal process for each t ¢ [0,»]. The interesting question is whether or

not one can find a finite or countable renewal-cover. If Q ~ r then there is

- a renewal-cover with one element (i.e. Q ~ r on [0,=]).

Theorem 2,20. Say Q is a finite state MRP such that Qij(t) is a continuous
function of t for each i and j. Let a(t) be the largest positive eigenvalue of
Q(t) and let v(t) be its associated nonnegative, normalized eigenvector. 1£

the set {v(t)} t ¢ [0,~], is finite or countable then so is the smallest

- renewal-cover, and there exists an open interval A< [0,~] such that Q ~ o on A.

' Proof. Let {v,,vz,'--} be a list of the elements of {v(t)} and let

A, - {s: v Q(s) = a(s)vn}. {An}n-1,2,~-- is the desired renewal-cover. Say
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tl’ t2. see An and ¢, > ¢t.

i Since Q(t) is continuous 1lim vnQ(ti) = vnQ(t),

i

and %EﬁLVnQ(ti) = %EfLQ(ti)vn = a(t)v,. Thus vnQ(t) = n(t)vn so A is

closed. By the Baire Category Theorem one of the An must contain an open

interval. o
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